- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allison, Noah Riley (1)
-
Bigelow, Vincent (1)
-
Gedlick, Danielle (1)
-
Karacolak, Tutku (1)
-
Mertvyy, Aleks (1)
-
Omi, Asif Iftekhar (1)
-
Renk, Noah (1)
-
Sagar, Md. Samiul (1)
-
Sekhar, Praveen (1)
-
Sekhar, Praveen Kumar (1)
-
Younes, Bachir (1)
-
Younes, Bachir Adham (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As the advancement of wireless devices and their applications progress, it is important to produce novel aspects of a usual design to expand their capabilities. One such application could be for extreme circumstances that would include high temperatures. In order to approach this issue, a new substrate has been proposed to implement high-temperature devices. Zirconia Ribbon Ceramic (ZRC) is made of YSZ with high temperature tolerance, smooth surface, moisture resistant, mechanically robust, and low thermal mass properties [1] . Recent publications has demonstrated the suitability of ZRC for implementing functional devices [ 1 –3 ]. Due to this material’s durability and capability of resisting high temperatures, it provides a desirable opportunity of applying this material as a substrate for patch antenna applications. The application of this material, however, requires the understanding of its electrical properties and behavior. This proposed material has a high relative permittivity and a low loss tangent as compared to traditionally available substrates. The high dielectric constant of ZRC along with low loss characteristics allows for realizing efficient wireless systems with smaller form factor. In this study, a wideband patch antenna on ZRC substrate is proposed for high-temperature environments. The antenna operates within 1.89 GHz–3 GHz frequency range, and can be used for WLAN, ISM band, and S-band applications.more » « less
-
Younes, Bachir; Sagar, Md. Samiul; Omi, Asif Iftekhar; Allison, Noah Riley; Gedlick, Danielle; Sekhar, Praveen Kumar (, Progress In Electromagnetics Research B)
An official website of the United States government
